Chem. Ber. 101, 2617–2621 (1968)

Alois Haas und Walter Klug

Darstellung perhalogenierter Dimethyldisulfane durch photochemische Reaktion von CSF_2 und CSFCl mit Sulfenylbromiden bzw. -chloriden

Aus dem Anorganisch-Chemischen Institut der Universität Göttingen

(Eingegangen am 12. Februar 1968)

 CSF_2 bzw. CSFCl reagieren unter der Einwirkung von UV-Licht mit perhalogenierten Sulfenylbromiden ($F_2BrC-SBr$ und FClBrC-SBr) und -chloriden ($Cl_{3-n}F_nC-SCl$, n = 1, 2, 3) in guten Ausbeuten zu den entsprechenden Dimethyldisulfanen. Reaktionsmechanismen werden diskutiert, IR- und ¹⁹F-NMR-Spektren aufgeführt.

Der in vorstehender Arbeit unternommene Versuch, in $Cl_{3-n}F_nC-SCl$ -Verbindungen Chloratome durch F_3CS -Gruppen zu ersetzen und die Reaktivität der S-Cl-Bindung solcher Sulfenylchloride gegenüber Silberpseudohalogeniden zu untersuchen, veranlaßte uns, auch CSF₂ mit F_3C -SCl umzusetzen. Statt der erhofften Verbindung $F_3CSC(F_2)$ -SCl, gemäß

$$F_2C = S + F_3C - SCl \longrightarrow F_3CSC(F_2) - SCl$$

entstand jedoch ausschließlich $F_3CS-SCF_2Cl$, ein unsymmetrisch substituiertes Dimethyldisulfan. Da die bislang bekannten Synthesen zur Darstellung perhalogenierter Disulfane stets zu symmetrisch substituierten Produkten führen, wurde die photochemische Reaktion eingehend untersucht, zumal, wie beim (F_3CS)₂ festgestellt wurde¹), fluorierte Dimethyldisulfane außergewöhnliche Toxizität besitzen.

Zu ihrer Herstellung wurden verschiedene Methoden benutzt: So ist das perchlorierte Dimethyldisulfan^{1a)} durch Einwirkung von Chlor auf Schwefelkohlenstoff erhalten worden. Das entsprechende Perfluordimethyldisulfan²⁾ ($F_3CS-SCF_3$) entsteht aus CF₃J und Schwefel bei 200°. Ferner bildet es sich aus CS₂ und HgF₂³⁾, aus F₃CSH und F₃C-SCl⁴⁾, bei der thermischen Zersetzung von F₃CS-SCN⁵⁾ und in beträchtlichen Mengen bei der Fluorierung

¹⁾ E. C. Stump, Chem. Engng. News 44, 44 (1967).

¹a) C. Hell und F. Urech, Ber. dtsch. chem. Ges. 15, 273 (1882).

²⁾ F. W. Bennett, G. R. A. Brandt, H. J. Emeléus und R. N. Haszeldine, Nature [London] 166, 225 (1950); G. R. A. Brandt, H. J. Emeléus und R. N. Haszeldine, J. chem. Soc. [London] 1952, 2198.

³⁾ E. H. Man, D. D. Coffman und E. L. Muetterties, J. Amer. chem. Soc. 81, 3575 (1959).

⁴⁾ R. N. Haszeldine und J. M. Kidd, J. chem. Soc. [London] 1953, 3219.

⁵⁾ H. J. Emeléus und A. Haas, J. chem. Soc. [London] 1963, 1272.

Jahrg. 101

von Cl₃C-SCl mit Natriumfluorid⁶). Gemischte symmetrische Disulfane wie (F_2ClCS)₂ bzw. (FCl₂CS)₂ wurden aus den entsprechenden Sulfenylchloriden und Kaliumjodid⁷) bzw. durch thermische Zersetzung von $F_2ClCS-SCN$ bzw. FCl₂CS-SCN hergestellt⁸). Eine allgemeine Darstellungsmethode ist schließlich die Photochlorierung von Kohlenwasserstoffen mit Sulfenylchloriden⁹) gemäß:

 $2 \operatorname{Cl}_{3-n}F_nC-SCl + H-R \longrightarrow (\operatorname{Cl}_{3-n}F_nCS)_2 + RCl + HCl$

Unsymmetrisch substituierte Fluor-halogen-dimethyldisulfane waren bislang unbekannt.

Die Umsetzung von Trihalogenmethansulfenylbromiden bzw. -chloriden mit CSF_2 bzw. CSFCl eröffnet nun eine einfache Möglichkeit, verschiedene, symmetrisch und vor allem unsymmetrisch substituierte Perhalogendimethyldisulfane zu synthetisieren. Bei der Bestrahlung eines stöchiometrischen Gemisches von FCl_2C-SCl und CSFCl mit UV-Licht erhält man in 91 proz. Ausbeute ($FCl_2CS)_2$.

Analog erhielten wir das bislang unbekannte $F_3CS-SCF_2Cl$ aus F_3C-SCl und CSF_2 nach

 $F_3C-SCl + CSF_2 \xrightarrow{hv} F_3CS-SCF_2Cl$

Folgende Feststellungen legen für diese Reaktionen zwingend einen radikalischen Mechanismus nahe:

1) Sulfenylhalogenid und Thiocarbonylverbindung reagieren ohne Bestrahlung bei Raumtemperatur nicht miteinander.

2) Verbindungen wie F_3C -SCl zerfallen beim Bestrahlen teilweise in Disulfid und Halogen¹⁰.

$$2 F_3C-SCl \longrightarrow F_3CS-SCF_3 + Cl_2$$

(zu 50 % bei Raumtemp.)

3) Als Nebenprodukte finden sich stets Substanzen, die durch Kombination zweier Radikale RS (R = Trihalogenmethyl) entstanden sind.

. Am Beispiel der Reaktion von CSF_2 mit F_3C-SC1 sei der radikalische Mechanismus der photochemischen Reaktion beschrieben:

 $F_3C-SCl \longrightarrow F_3CS \cdot + \cdot Cl^{10}$ (1)

$$F_3CS \cdot + CSF_2 \longrightarrow F_3CS - SCF_2 \cdot$$
 (2)

$$F_3CS - SCF_2 \cdot + F_3C - SCI \longrightarrow F_3CS - SCF_2CI + F_3CS \cdot$$
(3)

 $Cl \cdot + CSF_2 \longrightarrow ClF_2CS \cdot$ (4)

$$ClF_2CS \cdot + F_3C - SCl \longrightarrow F_3CS - SCF_2Cl + \cdot Cl$$
 (5)

10) R. N. Haszeldine und J. M. Kidd, J. chem. Soc. [London] 1953, 3223.

⁶⁾ C. W. Tullock und D. D. Coffman, J. org. Chemistry 25, 2016 (1960).

⁷⁾ N. N. Yarovenko, M. A. Raksha und V. M. Shemanina, J. allg. Chem. (russ.) 30, 4069 (1960); engl. Übersetzung: J. gen. Chem. USSR 4032 (1960).

⁸⁾ A. Haas und D. Y. Oh, Chem. Ber. 100, 480 (1967).

⁹⁾ H. Kloosterziel, Recueil Trav. chim. Pays-Bas 80, 1234 (1961); 82, 497 (1963).

Primär wird also die S-Cl-Bindung homolytisch gespalten nach (1). Die entstehenden Radikale reagieren dann nach (2) und (4) weiter zur Vorstufe des Endprodukts, welches nach (3) und (5) unter erneuter Bildung der Radikale aus (1) entsteht. Das tatsächliche Auftreten der Radikale F_3CS , Cl· und ClF₂CS· wird erhärtet durch den Nachweis der Nebenprodukte F_3CS -SCF₃, F_2ClCS -SCClF₂ und F_2ClC -SCl, die durch das ¹⁹F-NMR-Spektrum eindeutig identifiziert werden konnten.

Ihren Bildungsweg veranschaulichen folgende Gleichungen:

 $\begin{array}{rcl} F_3CS \cdot + \cdot SCF_3 & & & F_3CS-SCF_3 \\ F_2ClCS \cdot + \cdot SCClF_2 & & & F_2ClCS-SCClF_2 \\ & & Cl \cdot + \cdot Cl & & & Cl_2 \\ & & CSF_2 + Cl_2 & & & F_2ClC-SCl \end{array}$

Da keine Verbindung der Formel $F_3CSC(F_2)$ -SCl gefunden wird, können F_3CS · und Cl· nicht nach

 $\begin{array}{rcl} F_3CS{\boldsymbol{\cdot}}+F_2C{=}S & \longrightarrow & F_3CSC(F_2){-}S{\boldsymbol{\cdot}} \\ \\ \text{bzw.} & Cl{\boldsymbol{\cdot}}+F_2C{=}S & \longrightarrow & F_2CSCl \end{array}$

reagiert haben.

Die photochemischen Reaktionen von CSF₂ bzw. CSFCl mit Sulfenylbromiden und -chloriden haben gezeigt, daß bei gleichen experimentellen Bedingungen die Umsetzungen umso rascher verlaufen, je höher der Fluorierungsgrad der eingesetzten Verbindungen ist. Qualitativ läßt sich folgende Reaktivitätsskala angeben:

$$\label{eq:F3C-SCl} \begin{split} F_3C-SCl > F_2BrC-SBr > F_2ClC-SCl > FClBrC-SBr > FCl_2C-SCl > Cl_3C-SCl \\ und \qquad CSF_2 > CSFCl \end{split}$$

Die Ausbeuten sind immer dann besonders hoch, wenn Thiocarbonyl- und Sulfenylverbindungen die gleiche Anzahl an F-Atomen aufweisen (z. B. $CSF_2 + F_2ClC-SCl$). Die reinen Disulfane sind farblose, teilweise angenehm riechende, beständige Verbindungen, die sich unzersetzt destillieren lassen. Sie sind in Wasser beständig, aber unlöslich, in organischen Lösungsmitteln dagegen gut löslich.

Die IR-spektroskopisch untersuchten Disulfane mit F_3CS^{11} -, F_2ClCS^{8} - und FCl_2CS^{8} -Gruppen zeigen die für diese Reste charakteristischen Absorptionen.

Für die FClBrCS- und F₂BrCS-Gruppen treten zusätzlich Banden bei 840-750/cm auf, die der C-Br-Valenzschwingung zuzuordnen sind.

Dem Institutsdirektor Herrn Prof. Dr. O. Glemser möchten wir für seine Unterstützung herzlich danken. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für finanzielle Förderung, den Farbenfabriken Bayer, Leverkusen, für die Überlassung von Chemikalien.

¹¹⁾ S. N. Nabi und N. Sheppard, J. chem. Soc. [London] 1959, 3439.

Beschreibung der Versuche

IR-Spektren der flüssigen Substanzen wurden in Kapillarschichten mit einem Perkin-Elmer Gitterspektrophotometer 125 im NaCl- und KBr-Bereich aufgenommen.

Die ¹⁹*F-NMR-Spektren* wurden mit Hilfe eines Varian A 60 Spektrometers angefertigt. Lösungsmittel, Konzentration, chemische Verschiebung usw. sind in Tab. 1 aufgeführt. Eine typische Umsetzung sei am Beispiel der Reaktion von CSFCl mit FCl₂C-SCl beschrieben.

Bis(dichlorfluormethyl)-disulfan: 8.03 g (47.7 mMol) FCl_2C-SCl und 5.11 g (51.8 mMol) $CSFCl^*$) werden i.Vak. in ein mit flüssiger Luft gekühltes Bombenrohr destilliert. Nach 18stdg. Bestrahlung des abgeschmolzenen Rohres auf reflektierender Unterlage (Stanniol-papier) mit einer UV-Lampe (Philips HPK Typ 57203 B/₀₀, 125 W), Abstand 10 cm, wird es i. Vak. geöffnet und das überschüssige CSFCl bei -60° Badtemperatur abdestilliert. Die nichtflüchtige, fast farblose Flüssigkeit ergibt bei der Fraktionierung 11.52 g (91%) $FCl_2CS-SCCl_2F$. Sdp.₁₀ 71° (Lit.¹²): Sdp.₂₀ 90°).

¹⁹F-Chemische Verschiebung: 23.4 ppm (Lit.⁸): 23.2 ppm).

In Tab. 2 werden die Einwaagen, Ausbeuten, Reaktionsbedingungen, Analysen, in Tab. 1 die IR-Absorptionen und ¹⁹F-NMR-chemischen Verschiebungen angegeben.

	IR-Frequenzen in cm ⁻¹	¹⁹ F-chemische ppm (50proz. I	Verschiebung Lösg. in CFCl3)	Kopplungs- konst. in Hz
F ₃ CS-SCF ₂ Cl	1174 (sst), 1108 (sst), 1081 (ss), 887 (st), 867 (st), 855 (st), 755 (mst), 662 (s), 638 (s), 613 (s), 586 (s), 447 (m)	46.6 (-CF ₃)	33.8 (-CF ₂)	6
F ₃ CS-SCFCl ₂	1170 (sst), 1103 (sst), 1057 (mst), 910 (s), 833 (st), 805 (st), 754 (mst), 522 (s), 447 (m)	45.0 (-CF ₃)	25.9 (-CF)	9
F ₂ ClCS – SCFCl ₂	1123 (st), 1116 (st), 1090 (sst), 1075 (st), 882 (st), 867 (st), 851 (st), 834 (st), 803 (sst), 662 (ss), 638 (ss), 522 (s), 447 (m)	30.9 (-CF ₂)	24.7 (-CF)	12
FClBrCS-SCBrClF	1068 (sst), 1046 (sh), 821 (sst), 795 (sst), 782 (sst), 744 (sst), 498 (s), 497 (s)		20.6 (-CF)	6
F ₂ BrCS – SCBrClF	1128 (sst), 1082 (sst), 1053 (sst), 889 (m), 818 (sst), 795 (sst), 782 (ss), 746 (sst), 639 (m), 618 (s), 586 (ss), 499 (m), 483 (m), 443 (mst)	26.0 (-CF ₂)	22.1 (CF)	13
F ₂ BrCS-SCBrF ₂	1135 (sst), 1115 (sst), 1091 (sst), 1075 (sst), 890 (mst), 842 (st), 815 (sst), 640 (m), 617 (s), 586 (ss), 443 (mst)	_	27.4 (-CF ₂)	1

Tab. 1. IR-Absorptionen und NMR-Daten der dargestellten Verbindungen

^{*)} Zur Darstellung von CSFCl wurden 330 g (2.5 Mol) Tetralin auf annähernd 200° erhitzt und innerhalb von 6 Stdn. 678 g (4 Mol) frisch dest. FCl₂C-SCl zugetropft. Auswaage 220 g CSFCl (56%), Sdp. 9°.

¹²⁾ W. J. Middleton, E. G. Howard und W. H. Sharkey, J. Amer. chem. Soc. 83, 2589 (1961).

Tab.	2. Einwaagen, R	eaktionsbedingungen,	Analysen und ph	ysikalische Eigens	schaften der darg	estellten Disul	fane		
Formel (Brechungsindex) (n_D^{20})	Einw SCF _{2-n} Cl _n	aage g Mol) F _{3-n} X _n C-SX	Reaktions- zeit in Stdn. (Farbe)	Sdp. (% Ausb.)	Summenformel (MolGew.)	B A	nalysen r Cl	Ц	s
F ₃ CS-SCF ₂ CI	4.87 g CSF ₂ ¹²⁾ (59.4 mMol)	8.0 g F ₃ C-SCl (58.6 mMol)	0.3 farblose Flüssigk.	72° (67)	C ₂ CIF ₅ S ₂ (218.6)	Ber. 10.99 – Gef. 11.28 –	16.2	2 43.46 9 43.1	29.34 29.6
F ₃ CS-SCFCl ₂	5.59 g CSFCl	5.72 g F ₃ C-SCl	36	5455°/113 Torr	C ₂ Cl ₂ F ₄ S ₂	Ber. 10.22 –	30.1	5 32.32	27.28
(1.4351)	(56.7 mMol)	(41.9 mMol)	farblos	(56)	(235.0)	Gef. 10.31 –	30.4	32.0	27.3
F ₂ CICS-SCFCl ₂	2.95 g CSF ₂	6.40 g FCl ₂ C-SCl	20	147°	C ₂ Cl ₃ F ₃ S ₂	Ber. 9.55 -	42.2	9 22.66	25.50
(1.4795)	(36.0 mMol)	(37.8 mMol)	farbios	(62)	(251.5)	Gef. 9.72 -		22.6	25.65
FCIBrCS-SCBrCIF	3.00 g CSFCl	7.20 g FClBrC-SBr	6	113°/22 Torr	C ₂ Br ₂ Cl ₂ F ₂ S ₂	Ber. 6.73 44	1.78 19.8	7 10.65	17.97
(1.5750)	(30.5 mMol)	(27.8 mMol)	blaßgelb	(75)	(356.8)	Gef. 6.88 43	1.75 19.7	10.97	18.25
F ₂ BrCS-SCBrClF	1.88 g CSF ₂	6.00 g FClBrC-SBr	2	84°/26 Torr	C ₂ Br ₂ CIF ₃ S ₂	Ber. 7.06 46	.95 10.4	1 16.74	18.84
(1.5393)	(22.9 mMol)	(23.2 mMol)	blaßgelb	(78)	(340.4)	Gef. 7.22 46	.8 10.6	9 16.81	18.48
F ₂ BrCS-SCBrF ₂	2.05 g CSF ₂	6.00 g F ₂ BrC-SBr	0.3	48°/12 Torr	C ₂ Br ₂ F ₄ S ₂	Ber. 7.41 49	.,33 —	23.46	19.80
(1.4982)	(25.0 mMol)	(24.8 mMol)	farblos	(100)	(323.9)	Gef. 7.58 48	3.35 —	23.8	19.98
								[5	[89/6